①等差数列和等比数列有通项公式。
②累加法:用于递推公式为an+1=an+f(n),且f(n)可以求和。
③累乘法:用于递推公式为an+1/an=f(n) 且f(n)可求积。
④构造法:将非等差数列、等比数列,转换成相关的等差等比数列。
⑤错位相减法:用于形如数列由等差×等比构成:如an=n·2^n。
按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。
扩展资料
等差数列的其他推论:
① 和=(首项+末项)×项数÷2;
②项数=(末项-首项)÷公差+1;
③首项=2x和÷项数-末项或末项-公差×(项数-1);
④末项=2x和÷项数-首项;
⑤末项=首项+(项数-1)×公差;
⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。