伴随矩阵的求法:主对角元素是将原矩阵该元素所在行列去掉再求行列式。
非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y)x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。
伴随矩阵的求法是:就是主对角线元素交换位置,副对角线上的元素取其相反数。
这是按伴随矩阵的定义得到的。需要注意的一点是伴随矩阵是代数余子式的转置,转置是这个定义的重点,在计算的时候一定不要忘了。 如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。

伴随矩阵的性质:
第i行元素乘第j行的代数余子式的和等于用第i行元素替换第j行元素后的行列式的值(i≠j),替换后的行列式的第i行元素和第j行元素相同,所以行列式的值为0。所以每一行元素乘其他行的代数余子式的和为0。