当前位置:首页>维修大全>综合>

三次方程的求根公式(三次方程的韦达定理)

三次方程的求根公式(三次方程的韦达定理)

更新时间:2024-05-15 21:12:20

三次方程的求根公式

具体算法如下:

1、ax^3+bx^2+cx+d的标准型。

2、化成x^3+(b/a)x^2+(c/a)x+(d/a)=0。

3、可以写成x^3+a1*x^2+a2*x+a3=0。

4、其中a1=b/a,a2=c/a,a3=d/a。

5、令y=x-a1/3。

6、则y^3+px+q=0。

7、其中p=-(a1^2/3)+a2,q=(2a1^3/27)-(a1*a2)/3+a3。

扩展资料:

三次方程的其他解法:

1、因式分解法

因式分解法不是对所有的三次方程都适用,只对一些三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解.当然,因式分解的解法很简便,直接把三次方程降次.例如:解方程x3-x=0

对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0,x2=1,x3=-1。

2、另一种换元法

对于一般形式的三次方程,先用上文中提到的配方和换元,将方程化为x3+px+q=0的特殊型.令x=z-p/3z代入并化简,得:z-p/27z+q=0。再令z=w代入,得:w+p/27w+q=0.这实际上是关于w的二次方程.解出w,再顺次解出z,x。

三次方程形式为:

ax<sup>3</sup>+bx<sup>2</sup>+cx+d=0。

更多栏目