一、关系: 方程与函数都是由代数式组成。几何含义上函数与方程存在着联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量是图像与X轴交点;从代数角度看,对应的自变量是方程的解。 二、区别:
1、意义不同:方程重在说明几个未知数之间的在数字间的关系。函数重在说明某几个自变量的变化对因变量的影响。
2、求解不同:方程可以通过求解得到未知数的大小。特定的自变量的值就可以决定因变量的值。
3、变换不同:方程可以通过初等变换改变等号左右两边的方程式。
函数只可以化简,但不可以对函数进行初等变换。
一、关系: 方程与函数都是由代数式组成。几何含义上函数与方程存在着联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量是图像与X轴交点;从代数角度看,对应的自变量是方程的解。 二、区别:
1、意义不同:方程重在说明几个未知数之间的在数字间的关系。函数重在说明某几个自变量的变化对因变量的影响。
2、求解不同:方程可以通过求解得到未知数的大小。特定的自变量的值就可以决定因变量的值。
3、变换不同:方程可以通过初等变换改变等号左右两边的方程式。
函数只可以化简,但不可以对函数进行初等变换。