当前位置:首页>维修大全>综合>

如何求反函数(求反函数的十种方法)

如何求反函数(求反函数的十种方法)

更新时间:2024-09-05 13:46:20

如何求反函数

求反函数:

首先要看这个函数是否单调函数,如果不是则反函数不存在;

如果是单调函数,则只要把x和y互换,然后解出y即可。

例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。

拓展资料:

设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得g(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数,记为

由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f-1的值域和定义域,并且f-1的反函数就是f,也就是说,函数f和f-1互为反函数,即:

反函数与原函数的复合函数等于x,即:

习惯上我们用x来表示自变量,用y来表示因变量,于是函数y=f(x)的反函数通常写成

例如,函数

的反函数是

相对于反函数y=f-1(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。这是因为,如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。

于是我们可以知道,如果两个函数的图像关于y=x对称,那么这两个函数互为反函数。这也可以看做是反函数的一个几何定义。

微积分里,f(n)(x)是用来指f的n次微分的。

若一函数有反函数,此函数便称为可逆的(invertible)。

更多栏目