柯西不等式一般式为:等号成立条件为:一般形式推广形式为:此推广形式又称卡尔松不等式,其表述是:在m×n矩阵中,各列元素之和的几何平均不小于各行元素的几何平均之和。柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。其二维形式为:等号成立条件:
柯西不等式一般式为:等号成立条件为:一般形式推广形式为:此推广形式又称卡尔松不等式,其表述是:在m×n矩阵中,各列元素之和的几何平均不小于各行元素的几何平均之和。柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。其二维形式为:等号成立条件: