旋转体表面积的公式S=∫2πf(x)*(1+y'²)dx,体积公式为Vy=∫(2πx*f(x)*dx)=2π∫xf(x)dx。
在x轴上取x→x+△x【△x→0】区域,该区域绕x轴旋转一周得到的旋转曲面的面积,即表面积积分元。等于以f(x)为半径的圆周周长×弧线长度,即它可以看做是沿x轴方向上,将△x宽度的圆环带剪断,得到一个以圆环带周长为长,宽为x→x+△x弧线长度的矩形的面积。
以f(x)为半径的圆周长=2πf(x),对应的弧线长=√(1+y'^2)△x,所以其面积=2πf(x)*√(1+y'^2)△x
这就得到表面积积分元,所以,表面积为∫2πf(x)*(1+y'^2)dx。
旋转体侧面积公式是S=2π∫(1,t)(t-x)/x²dx+2π∫(t,2)(x-t)/x²dx。一条平面曲线绕着所在的平面的一条定直线旋转所形成的曲面叫作旋转面;该直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
圆柱体是旋转体的一种,一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。生活中的旋转体有风车、车轮、摩天轮、水磨等。表面积是指所有立体图形的所能触摸到的面积之和。