一个二元多项式,如果把其中两个元互换,所得的结果都与原式相同,则称此多项式是关于这些元的对称二项式。x2+y2,xy+yz都是关于元x、y的对称多项式。
在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
一个二元多项式,如果把其中两个元互换,所得的结果都与原式相同,则称此多项式是关于这些元的对称二项式。x2+y2,xy+yz都是关于元x、y的对称多项式。
二项式定理展开的特点
项数:共有n+1项;
系数:依次为组合数Cn,Cn,Cn,Cn,…,Cn;
每一项的次数都是一样的,即为n次,展开式以a的降次幂排列,b的升次幂排列展开。
二项式定理的性质
二项式定理的系数具有对称性。在二项式展开式中与首末两端“等距离”的两项的二项式系数相等;将它们绘成图像f(x),图像关于x=n/2对称,即x=n/2为图像f(x)的对称轴;
二项式展开的中间项是二项式系数的最大值。当n为偶数时,中间项是第n/2+1项最大;当n为奇数时,中间项为两项,即为第(n+1)/2项和第(n+1)/2+1项的系数最大;