设多边形的边数为N 则其内角和=(N-2)*180° 因为N个顶点的N个外角和N个内角的和 =N*180° (每个顶点的一个外角和相邻的内角互补) 所以N边形的外角和 =N*180°-(N-2)*180° =N*180°-N*180°+360° =360° 即N边形的外角和等于360° 设多边形的边数为N 则其外角和=360° 因为N个顶点的N个外角和N个内角的和 =N*180° (每个顶点的一个外角和相邻的内角互补) 所以N边形的内角和 =N*180°-360° =N*180°-2*180° =(N-2)*180° 即N边形的内角和等于(N-2)*180°