空集是指不含任何元素的集合。空集是任何集合的子集,是任何非空集合的真子集。空集不是无;它是内部没有元素的集合。可以将集合想象成一个装有元素的袋子,而空集的袋子是空的,但袋子本身确实是存在的。
对任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A;
对任意集合 A,空集和 A 的并集为 A:∀A:A ∪ Ø = A;
对任意非空集合 A,空集是 A的真子集:∀A,,,若A≠Ø,则Ø 真包含于 A。
对任意集合 A,空集和 A 的交集为空集:∀A,A ∩ Ø = Ø;
对任意集合 A,空集和 A 的笛卡尔积为空集:∀A,A × Ø = Ø;
空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,则 A= Ø;∀A,若A= Ø,则A ⊆ Ø ⊆ A。
空集的元素个数(即它的势)为零;
特别的,空集是有限的:| Ø | = 0;
对于全集,空集的补集为全集:CUØ=U。
集合论中,若两个集合有相同的元素,则它们相等。那么,所有的空集都是相等的,即空集是唯一的。
考虑到空集是实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。空集的内点集合也是空集,是它的子集,因此空集是开集。另外,因为所有的有限集合是紧致的,所以空集是紧致集合,。
空集的闭包是空集。
空集
不含任何元素的集合称为空集。空集是一切集合的子集。空集是任何非空集合的真子集。空集不是无;它是内部没有元素的集合,而集合就是有。
集合论中,两个集合相等,若它们有相同的元素;那么仅可能有一个集合是没有元素的,即空集是唯一的。