在某区域内的调和函数一定是该区域内某解析函数(可能多值)的实部或虚部;反之,某区域内的解析函数其实部与虚部都是该区域内的调和函数,并称其虚部为实部的共轭调和函数。用复数z=x+iy的记法,将u(x,y)写成u(z),若u(z)在│z│<R内调和,在│z│≤R上连续,则泊松公式就成为
(0≤r<R)。
对于任何α,│α│<R,此式还可写成
泊松积分是近代复变函数论中一个重要的研究工具,由此出发,可得出函数论中一系列重要结果。
在某区域内的调和函数一定是该区域内某解析函数(可能多值)的实部或虚部;反之,某区域内的解析函数其实部与虚部都是该区域内的调和函数,并称其虚部为实部的共轭调和函数。用复数z=x+iy的记法,将u(x,y)写成u(z),若u(z)在│z│<R内调和,在│z│≤R上连续,则泊松公式就成为
(0≤r<R)。
对于任何α,│α│<R,此式还可写成
泊松积分是近代复变函数论中一个重要的研究工具,由此出发,可得出函数论中一系列重要结果。