对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1) 对数函数的定义域为大于0的实数集合。
(2) 对数函数的值域为全部实数集合。
对数函数
(3) 函数图像总是通过(1,0)点。
(4) a大于1时,为单调增函数,并且上凸;a大于0小于1时,函数为单调减函数,并且下凹。
(5) 显然对数函数无界。
对数函数的常用简略表达方式:
(1)log(a)(b^n)=nlog(a)(b) (a为底数)(n属于R)
(2)lg(b)=log(10)(b) (10为底数)
(3)ln(b)=log(e)(b) (e为底数)
对数函数的运算性质:
如果a〉0,且a不等于1,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n属于R)
(4)log(a^k)^(M^n)=(n/k)log(a)(M) (n属于R)
(5) a^log(a)(N)=N
对数与指数之间的关系
当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x
log(a^k)(M^n)=(n/k)log(a)(M) (n属于R)