柯西不等式三维公式是(a^2+b^2+c^2)(d^2+e^2+f^2)>=(ad+be+cf)^2,柯西不等式是由大数学家柯西在研究数学分析中的“流数”问题时得到的。基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。
柯西不等式三维公式是(a^2+b^2+c^2)(d^2+e^2+f^2)>=(ad+be+cf)^2,柯西不等式是由大数学家柯西在研究数学分析中的“流数”问题时得到的。基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。