证明:过圆心O作AD与BC的垂线,垂足为S、T,连接OX,OY,OM,SM,MT。
∵△AMD∽△CMB∴AM/CM=AD/BC
∵AS=1/2AD,CT=1/2BC
∴AM/CM=AS/CT
又∵∠A=∠C
∴△AMS∽△CMT
∴∠MSX=∠MTY
∵∠OMX=∠OSX=90°
∴∠OMX+∠OSX=180°
∴O,S,X,M四点共圆
同理,O,T,Y,M四点共圆
∴∠MTY=∠MOY,∠MSX=∠MOX
∴∠MOX=∠MOY ,
∵OM⊥PQ
∴∠OMX=∠OMY=90°
又OM=OM
∴△OMX≌△