当前位置:首页>维修大全>综合>

等差数列的等差中项

等差数列的等差中项

更新时间:2023-09-10 15:36:59

等差数列的等差中项

等差中项即等差数列头尾两项的和的一半。但求等差中项不一定要知道头尾两项。

等差数列中,等差中项一般设为A(r)。当A(m),A(r),A(n)成等差数列时。

A(m)+A(n)=2×A(r),所以A(r)为A(m),A(n)的等差中项,且

为数列的平均数。并且可以推知n+m=2×r。

且任意两项a(m),a(n)的关系为:a(n)=a(m)+(n-m)*d,(类似p(n)=p(m)+(n-m)*b(1),相当容易证明

它可以看作等差数列广义的通项公式。

等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

若为等差数列,且有a(n)=m,a(m)=n。则a(m+n)=0。

其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:

今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?

书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。

这相当于给出了S(n)=(a(1)+a(n))/2*n的求和公式。

更多栏目