质因数(素因数或质因子)在数论里是指能整除给定正整数的质数。除了1以外,两个没有其他共同质因子的正整数称为互质。因为1没有质因子,1与任何正整数(包括1本身)都是互质。正整数的因数分解可将正整数表示为一连串的质因子相乘,质因子如重复可以用指数表示。根据算术基本定理,任何正整数皆有独一无二的质因子分解式 。只有一个质因子的正整数为质数。每个合数都可以写成几个质数(也可称为素数)相乘的形式,这几个质数就都叫做这个合数的质因数。如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数;而这个因数一定是一个质数。扩展资料:质数具有许多独特的性质:1、质数p的约数只有两个:1和p。2、初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。3、质数的个数是无限的。4、所有大于10的质数中,个位数只有1,3,7,9。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。