此问题的求解步骤如下:
我们先求解对应齐次方程的通解:dp/dx=p
然后进行分离变量法 lnp=x+C1
所以p=Ce^(x)
因为C为常数,我们根据常数变易法令
p=C(x)e^(x)
把p带入原方程有
C(x)e^(x)+C'(x)e^(x)-C(x)e^(x)=x → C'(x)e^(x)=x
dC(x)=x*e^(-x)dx
C(x)=-[x*e^(-x)-∫e^(-x)dx]=-x*e^(-x)-e^(-x)+C1
所以得到结果
p=(-x*e^(-x)-e^(-x)+C1)e^(x) → p=-x*-1+C1e^(x)。