椭圆焦点三角形面积公式推导如下:
设P为椭圆上的任意一点P(不与焦点共线)。
∠F2F1P=α,∠F1F2P=β,∠F1PF2=θ。
则有离心率e=sin(α+β)/(sinα+sinβ)。
焦点三角形面积S=b²·tan(θ/2)。
椭圆的焦点三角形性质为:
(1)|PF1|+|PF2|=2a。
(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ。
(3)周长=2a+2c。
(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)。
椭圆焦点三角形面积公式推导如下:
设P为椭圆上的任意一点P(不与焦点共线)。
∠F2F1P=α,∠F1F2P=β,∠F1PF2=θ。
则有离心率e=sin(α+β)/(sinα+sinβ)。
焦点三角形面积S=b²·tan(θ/2)。
椭圆的焦点三角形性质为:
(1)|PF1|+|PF2|=2a。
(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ。
(3)周长=2a+2c。
(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)。