有界数列不一定收敛。例如,已知数列{(-1)^n}是有界的,但它却是发散的。换句话说,有界是数列收敛的必要条件而不是充分条件。又例如数列{b(n)},b(n)=(-1)^n,b(n)<=1{b(n)}有界,b(n)为摆动数列,但是不收敛。
数列{Xn}满足:对一切n有Xn≤M(其中M是与n无关的常数)称数列{Xn}上有界(有上界)并称M是他的一个上界。
有界数列不一定收敛。例如,已知数列{(-1)^n}是有界的,但它却是发散的。换句话说,有界是数列收敛的必要条件而不是充分条件。又例如数列{b(n)},b(n)=(-1)^n,b(n)<=1{b(n)}有界,b(n)为摆动数列,但是不收敛。
数列{Xn}满足:对一切n有Xn≤M(其中M是与n无关的常数)称数列{Xn}上有界(有上界)并称M是他的一个上界。