当前位置:首页>维修大全>综合>

绝对值不等式6个基本公式(绝对值必背口诀)

绝对值不等式6个基本公式(绝对值必背口诀)

更新时间:2024-09-06 20:35:47

绝对值不等式6个基本公式

绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。

绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。

绝对值重要不等式推导过程:

我们知道|x|={x,(x>0);x,(x=0);-x,(x<0);

因此,有:

-|a|≤a≤|a|......①

-|b|≤b≤|b|......②

-|b|≤-b≤|b|......③

由①+②得:

-(|a|+|b|)≤a+b≤|a|+|b|

即|a+b|≤|a|+|b|......④

由①+③得:

-(|a|+|b|)≤a-b≤|a|+|b|

即|a-b|≤|a|+|b|......⑤

另:

|a|=|(a+b)-b|=|(a-b)+b|

|b|=|(b+a)-a|=|(b-a)+a|

由④知:

|a|=|(a+b)-b|≤|a+b|+|-b|=>|a|-|b|≤|a+b|.......⑥

|b|=|(b+a)-a|≤|b+a|+|-a|=>|a|-|b|≥-|a+b|.......⑦

|a|=|(a-b)+b|≤|a-b|+|b|=>|a|-|b|≤|a-b|.......⑧

|b|=|(b-a)+a|≤|b-a|+|a|=>|a|-|b|≥-|a-b|.......⑨

由⑥,⑦得:

| |a|-|b| |≤|a+b|......⑩

由⑧,⑨得:

| |a|-|b| |≤|a-b|......⑪

综合④⑤⑩⑪得到有关绝对值的重要不等式:|a|-|b|≤|a±b|≤|a|+|b|

要注意等号成立的条件(特别是求最值),即:

|a-b|=|a|+|b|→ab≤0

|a|-|b|=|a+b|→b(a+b)≤0

|a|-|b|=|a-b|→b(a-b)≥0

注:|a|-|b|=|a+b|→|a|=|a+b|+|b|→|(a+b)-b|=|a+b|+|b|→b(a+b)≤0

同理可得|a|-|b|=|a-b|→b(a-b)≥0。

| |a|-|b| |≤|a+b|≤|a|+|b|

| |a|-|b| | ≤ |a±b| ≤ |a| + |b|是由两个双边不等式组成。

一个是| |a|-|b| | ≤ |a+b| ≤ |a| + |b|,这个不等式当a、b同方向时(如果是实数,就是正负符合相同) |a+b| = |a| + |b|成立。当a、b异向(如果是实数,就是ab正负符合不同)时,| |a|-|b| | = |a±b|成立。

另一个是| |a|-|b| | ≤ |a-b| ≤ |a| + |b|,这个等号成立的条件刚好和前面相反,当a、b异向(如果是实数,就是ab正负符合不同)时,|a-b| = |a| + |b|成立。当a、b同方向时(如果是实数,就是正负符合相同)时,| |a|-|b| | = |a-b|成立。

| |a|-|b| |≤|a-b|≤|a|+|b|

更多栏目