当前位置:首页>维修大全>综合>

向量的坐标表示及其运算的公式(向量的坐标表示及运算的公式)

向量的坐标表示及其运算的公式(向量的坐标表示及运算的公式)

更新时间:2024-08-06 20:11:40

向量的坐标表示及其运算的公式

加法

已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差

三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。

四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。

对于零向量和任意向量a,有:0+a=a+0=a。

向量的加法满足所有的加法运算定律,如:交换律、结合律。

减法

AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。

-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

数乘

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。

用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)

设λ、μ是实数,那么满足如下运算性质:

(λμ)a= λ(μa)

(λ + μ)a= λa+ μa

λ(a±b) = λa± λb

(-λ)a=-(λa) = λ(-a)

|λa|=|λ||a|

数量积

已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

向量的坐标运算公式是λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。

当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。<br>注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当 |λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍

更多栏目