代入n=100,得第一百项等于3.542248e20,其结果是超过初中知识范围的,只记住通项公式就行。
以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)
在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
斐波那契数列前 100 个数无法一一列出,但我们可以提供前几个数列如下:
斐波那契数列:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296,433494437,701408733,1134903170,1836311903,2971215073,4807526976,7778742049,12586269025,20365011074,32951280099,53316291173,86267571272,139583862445,225851433717,365435296162,591286729879,956722026041,1548008755920,2504730781961,4052...
你可以通过上述数列看出,斐波那契数列的规律是:从第三个数起,每个数是前两个数的和。这个数列具有许多有趣的性质,并且在数学、物理、生物学等领域都有广泛的应用。