以单位圆为例,积第一象限,用换元法: ∫(1-x^2)^(1/2)*dx =∫(1-sint*sint)^(1/2)*d(sint)(t从0到π/2) =∫cost*cost*dt =0.25*∫[1+cos(2t)]*d(2t) =0.25*∫du+0.25*∫cosu*du(u从0到π) =0.25π+0.25*(sinπ-sin0) =0.25π 算四个象限就变成π,即单位圆的面积。
以单位圆为例,积第一象限,用换元法: ∫(1-x^2)^(1/2)*dx =∫(1-sint*sint)^(1/2)*d(sint)(t从0到π/2) =∫cost*cost*dt =0.25*∫[1+cos(2t)]*d(2t) =0.25*∫du+0.25*∫cosu*du(u从0到π) =0.25π+0.25*(sinπ-sin0) =0.25π 算四个象限就变成π,即单位圆的面积。