RSA密码算法是目前理论和实际应用中最为成熟的和完善的公钥密码体制。RSA用来解决对称密码的密钥分发问题。还可以用来进行数字签名来保证信息的否定与抵赖,利用数字签名较容易发现攻击者对信息的非法篡改以保证信息的完整性。
RSA的安全性依赖于大整数的因子分解的困难性,为了满足信息安全强度的需求,密钥的位数都比较多(521位甚至更高),导致幂模运算的运算量极大,成为提高RSA算法加解密速度的瓶颈。
RSA密码算法是目前理论和实际应用中最为成熟的和完善的公钥密码体制。RSA用来解决对称密码的密钥分发问题。还可以用来进行数字签名来保证信息的否定与抵赖,利用数字签名较容易发现攻击者对信息的非法篡改以保证信息的完整性。
RSA的安全性依赖于大整数的因子分解的困难性,为了满足信息安全强度的需求,密钥的位数都比较多(521位甚至更高),导致幂模运算的运算量极大,成为提高RSA算法加解密速度的瓶颈。