当前位置:首页>维修大全>综合>

化简比的方法(初一化简求值题100道)

化简比的方法(初一化简求值题100道)

更新时间:2024-05-15 13:41:01

化简比的方法

① 整数比化简,比的前项和后项同时除以它们的最大公约数;

② 小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简;

③ 分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简;

④ 也可以用求比值的方法化简,求出比值后再写成比的形式。

1.最简整数比。

比的前项和比的后项都是整数,并且比的前项和后项的最大公因数是1。

2. 把一个比化成最简整数比的过程,叫作化简比。

3. 比的基本性质。

比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。

4. 比的前项和后项不能同时乘或除以0的原因。

(1)因为除数不能为0,所以比的前项和后项不能同时除以0。

(2)因为比的前项和后项同时乘0后,比的后项变为0,而0不能作比的后项,所以比的前项和后项也不能同时乘0。

5.化简比的方法。

(1)整数比的化简方法:

方法一,先把比改写成分数的形式,再把这个分数进行约分,最后改写成最简整数比;

方法二,把比改写成除法算式,根据商不变的规律,把被除数和除数同时除以它们的最大公因数,求出商后再化成最简整数比;

方法三,把比的前项、后项同时除以它们的最大公因数,直接化成最简整数比。

(2)分数比的化简方法:

方法一:根据比与除法的关系,将比改写成除法算式,并求出结果,商用最简分数表示,然后将最简分数转化成最简整数比的形式;

方法二:把比的前项和后项同时乘它们分母的最小公倍数,然后按照整数比的化简方法化成最简整数比。

(3)小数比的化简方法:

方法一:根据比与除法的关系,将比改写成除法算式,根据商不变的规律,将被除数与除数同时扩大到原来的相同的倍数(0除外),从而化成整数比,然后按照整数比的化简方法化成最简整数比;

方法二:根据比的基本性质,先把比的前项和后项的小数点向右移动相同的位数,将小数比化成整数比,然后按照整数比的化简方法化成最简整数比。

6.化简比和求比值的区别。

(1)在计算依据上,化简比依据除法中商不变的规律、分数中分数的基本性质及比的基本性质;求比值依据比值的意义。

(2)在计算方法上,化简比时可以改写成分数约分化简,也可以改写成除法求商化简,还可以把比的前项和后项同时乘或除以同一个不为0的数;求比值则是用比的前项除以比的后项。

(3)在结果的表现形式上,化简比的最终结果是一个最简整数比;求比值的最终结果是一个数,可以是分数、小数或整数。

(一)比的基本概念

1.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

2.比值通常用分数、小数和整数表示。

3.比的后项不能为0。

4.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

5.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

(二)求比值

1、求比值:用比的前项除以比的后项

(三)化简比

1、化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。

(四)比的应用

1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?

例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?

题目解析:60人就是男女生人数的和。

解题思路:第一步求每份:60÷(5+7)=5人

第二步求男女生:男生:5×5=25人 女生:5×7=35人。

2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?

例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?

题目解析:“男生25人”就是其中的一个数量。

解题思路:第一步求每份:25÷5=5人

第二步求女生: 女生:5×7=35人。全班:25+35=60人

3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?

例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?

4、要求量=已知量×要求量份数/已知量份数

5、比在几何里的运用:

(1)已知长方形的周长,长和宽的比是a:b。求长和宽、面积。

长=周长÷2×a/(a+b)

宽=周长÷2×b/(a+b) 

面积=长×宽

(2)已知已知长方体的棱长和,长、宽、高的比是a:b:c。求长、宽、高、体积

长=周长÷4×a/(a+b+c)

宽=周长÷4×b/(a+b+c)

高=周长÷4×c/(a+b+c)

体积=长×宽×高

(3)已知三角形三个角的比是a:b:c,求三个内角的度数。

三个角分别为:

180×a/(a+b+c)

180×b/(a+b+c)

180×c/(a+b+c)

(4)已知三角形的周长,三条边的长度比是a:b:c,求三条边的长度。

三条边分别为:

周长×a/(a+b+c)

周长×b/(a+b+c)

周长×c/(a+b+c)

答案是:化简比的依据就是根据比的基本性质:比的前项和后项同时乘以或者是除以同一个不等于零的正整数,比值不变。举例子说明即是:16:32=8:16=2:4=1:2。

更多栏目