当前位置:首页>维修大全>综合>

初一物理上册知识点(初一物理上册知识点归纳)

初一物理上册知识点(初一物理上册知识点归纳)

更新时间:2024-05-11 20:56:18

初一物理上册知识点

第一章 声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章 光现象知识归纳 1. 光源:自身能够发光的物体叫光源。 2. 太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌 。 1. 光的直线传播:光在均匀介质中是沿直线传播。 2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。 3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。 4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的) 5.漫反射和镜面反射一样遵循光的反射定律。 6.平面镜成像特点:(1) 平面镜成的是虚像;(2) 像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。 7.平面镜应用:(1)成像;(2)改变光路。 8.平面镜在生活中使用不当会造成光污染。 球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。第三章透镜及其应用知识归纳 光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的现象。 光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。(折射光路也是可逆的) 凸透镜:中间厚边缘薄的透镜,它对光线有会聚作用,所以也叫会聚透镜。 凸透镜成像: (1)物体在二倍焦距以外(u>2f),成倒立、缩小的实像(像距:f<v<2f),如照相机; (2)物体在焦距和二倍焦距之间(f<u<2f),成倒立、放大的实像(像距:v>2f)。如幻灯机。 (3)物体在焦距之内(u<f),成正立、放大的虚像。 光路图: 6.作光路图注意事项:  (1).要借助工具作图;(2)是实际光线画实线,不是实际光线画虚线;(3)光线要带箭头,光线与光线之间要连接好,不要断开;(4)作光的反射或折射光路图时,应先在入射点作出法线(虚线),然后根据反射角与入射角或折射角与入射角的关系作出光线;(5)光发生折射时,处于空气中的那个角较大;(6)平行主光轴的光线经凹透镜发散后的光线的反向延长线一定相交在虚焦点上;(7)平面镜成像时,反射光线的反向延长线一定经过镜后的像;(8)画透镜时,一定要在透镜内画上斜线作阴影表示实心。 7.人的眼睛像一架神奇的照相机,晶状体相当于照相机的镜头(凸透镜),视网膜相当于照相机内的胶片。 8.近视眼看不清远处的景物,需要配戴凹透镜;远视眼看不清近处的景物,需要配戴凸透镜。 9.望远镜能使远处的物体在近处成像,其中伽利略望远镜目镜是凹透镜,物镜是凸透镜;开普勒望远镜目镜物镜都是凸透镜(物镜焦距长,目镜焦距短)。 10.显微镜的目镜物镜也都是凸透镜(物镜焦距短,目镜焦距长)。 第四章 物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。 6. 熔化:物质从固态变成液态的过程叫熔化。要吸热。 7. 凝固:物质从液态变成固态的过程叫凝固。要放热. 8. 熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固点相同。 9. 晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。

第一章 实数

★重点★ 实数的有关概念及性质,实数的运算

☆内容提要☆

一、 重要概念

1.数的分类及概念

数系表:

说明:“分类”的原则:1)相称(不重、不漏)

2)有标准

2.非负数:正实数与零的统称。

(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法

②性质:A。a≠1/a(a≠±1);B。

1/a中,a≠0;C。0<a<1时1/a>1;a>1时,1/a<1;D。积为1。

4.相反数: ①定义及表示法

②性质:A。a≠0时,a≠-a;B。a与-a在数轴上的位置;C。和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A。

直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算

1. 运算法则(加、减、乘、除、乘方、开方)

2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

分配律)

3. 运算顺序:A。

高级运算到低级运算;B。(同级运算)从“左”

到“右”(如5÷ ×5);C。(有括号时)由“小”到“中”到“大”。

三、 应用举例(略)

附:典型例题

1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│ │x-b│

=b-a。

2。已知:a-b=-2且abb←→a c>b c

⑵a>b←→ac>bc(c>0)

⑶a>b←→acb,b>c→a>c

⑸a>b,c>d→a c>b d。

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

7.应用举例(略)

第七章 相似形

★重点★相似三角形的判定和性质

☆内容提要☆

一、本章的两套定理

第一套(比例的有关性质):

涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

第二套:

注意:①定理中“对应”二字的含义;

②平行→相似(比例线段)→平行。

二、相似三角形性质

1.对应线段…;2.对应周长…;3.对应面积…。

三、相关作图

①作第四比例项;②作比例中项。

四、证(解)题规律、辅助线

1.“等积”变“比例”,“比例”找“相似”。

2.找相似找不到,找中间比。

方法:将等式左右两边的比表示出来。⑴

3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。

4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。

5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。

五、 应用举例(略)

第八章 函数及其图象

★重点★正、反比例函数,一次、二次函数的图象和性质。

☆ 内容提要☆

一、平面直角坐标系

1.各象限内点的坐标的特点

2.坐标轴上点的坐标的特点

3.关于坐标轴、原点对称的点的坐标的特点

4.坐标平面内点与有序实数对的对应关系

二、函数

1.表示方法:⑴解析法;⑵列表法;⑶图象法。

2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

意义。

3.画函数图象:⑴列表;⑵描点;⑶连线。

三、几种特殊函数

(定义→图象→性质)

1. 正比例函数

⑴定义:y=kx(k≠0) 或y/x=k。

⑵图象:直线(过原点)

⑶性质:①k>0,…②k0,…②k0时,开口向上;a0时,在对称轴左侧…,右侧…;a0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。

四、重要解题方法

1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。

六、应用举例(略)

第九章 解直角三角形

★重点★解直角三角形

☆ 内容提要☆

一、三角函数

1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= 。

2. 特殊角的三角函数值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余两角的三角函数关系:sin(90°-α)=cosα;…

4. 三角函数值随角度变化的关系

5.查三角函数表

二、解直角三角形

1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:①边的关系:

②角的关系:A B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

四、应用举例(略)

第十章 圆

★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆ 内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1。

三种位置及判定与性质:

2。切线的性质(重点)

3。切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

1。

五种位置关系及判定与性质:(重点:相切)

2。相切(交)两圆连心线的性质定理

3。

两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1。相交弦定理

2。切割线定理

五、与和正多边形

1。圆的内接、外切多边形(三角形、四边形)

2。

三角形的外接圆、内切圆及性质

3。圆的外切四边形、内接四边形的性质

4。正多边形及计算

中心角:

内角的一半: (右图)

(解Rt△OAM可求出相关元素, 、 等)

六、 一组计算公式

1。

圆周长公式

2。圆面积公式

3。扇形面积公式

4。弧长公式

5。弓形面积的计算方法

6。圆柱、圆锥的侧面展开图及相关计算

七、 点的轨迹

六条基本轨迹

八、 有关作图

1。

作三角形的外接圆、内切圆

2。平分已知弧

3。作已知两线段的比例中项

4。等分圆周:4、8;6、3等分

九、 基本图形

十、 重要辅助线

1。

作半径

2。见弦往往作弦心距

3。见直径往往作直径上的圆周角

4。切点圆心莫忘连

5。两圆相切公切线(连心线)

6。两圆相交公共弦

十一、应用举例(略)。

更多栏目