复数的几何意义是:
1、复数z=a+bi 与复平面内的点(a,b)一一对应。
2、复数z=a+bi 与向量OZ一一对应,其中Z点坐标为(a,b)。
复数:把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i 称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
虚数单位 i ,远不是代表纵轴上的点那么简单,因为我们还赋予了复数运算,如果结合i^{2}=-1来看,几何上i实际代表了旋转,实轴上的点a乘上i等于将该点旋转到了纵轴上,再乘一次i又转到了实轴上,相当于把点a旋转了180度。由此可见,i 代表了逆时针方向90度的旋转。复数的运算也可以找到它的几何意义,特别是加法运算可以对应力的合成。