特征多项式 = (λ-1)^2 (λ+1)。 二重特征值是指特征值是特征多项式的2重根。 如A的特征多项式为|λE-A |=(λ-2)(λ^2-8λ+18+3a)。
当λ=2是特征方程的二重根,则有2^2-8*2+18+3a=0,解得a=-2。
若λ=2不是特征方程的二重根,则(λ^2-8λ+18+3a)为完全平方,从18+3a=16而,解得 a。
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。
非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。