异方差(heteroscedasticity )是为了保证回归参数估计量具有良好的统计性质。
经典线性回归模型的一个重要假定是:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。
如果这一假定不满足,则称线性回归模型存在异方差性。
若线性回归模型存在异方差性,则用传统的最小二乘法估计模型,得到的参数估计量不是有效估计量,甚至也不是渐近有效的估计量;此时也无法对模型参数的进行有关显著性检验。
对存在异方差性的模型可以采用加权最小二乘法进行估计。
异方差(heteroscedasticity )是为了保证回归参数估计量具有良好的统计性质。
经典线性回归模型的一个重要假定是:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。
如果这一假定不满足,则称线性回归模型存在异方差性。
若线性回归模型存在异方差性,则用传统的最小二乘法估计模型,得到的参数估计量不是有效估计量,甚至也不是渐近有效的估计量;此时也无法对模型参数的进行有关显著性检验。
对存在异方差性的模型可以采用加权最小二乘法进行估计。