一般式:Ax+By+C=0,其中A,B,C为常数;A,B不同时为0。
除此以外,常用的还有以下四种形式:
斜截式:y=kx+b
点斜式:y-y₁=k(x-x₁)
截距式:x/a+y/b=1
两点式:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁)
答:直线方程的一般式
:Ax + By + C = 0 (A≠0 && B≠0)【适用于所有直线】。
斜率是指一条直线与平面直角坐标系
横轴正半轴方向的夹角的正切值
,即该直线相对于该坐标系的斜率, 一般式公式:k = -A/B。
横截距是指一条直线与横轴相交的点(a,0)与原点的距离,一般式的公式:a = -C/A。
纵截距是指一条直线与纵轴相交的点(0,b)与原点的距离,一般式的公式:b = -C/B。
例:已知一条直线方程2x - y + 3 = 0
1、横截距(-C/A): -3/2 = -1.5;
2、纵截距(-C/B): -3/-1 = 3;
3、斜率(-A/B): -2/-1 = 2。
扩展资料
直线方程的种类:
1、点斜式:y-y0=k(x-x0) 【适用于不垂直于x轴的直线】
表示斜率为k,且过(x0,y0)的直线。
2、截距式
:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线。
3、斜截式:y=kx+b【适用于不垂直于x轴的直线】
表示斜率为k且y轴截距为b的直线。
4、两点式
:【适用于不垂直于x轴、y轴的直线】
表示过(x1,y1)和(x2,y2)的直线。
5、两点式
(y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)
交点式:f1(x,y) *m+f2(x,y)=0 【适用于任何直线】
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线。
6、点平式:f(x,y) -f(x0,y0)=0【适用于任何直线】
表示过点(x0,y0)且与直线f(x,y)=0平行的直线。
7、法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴
的直线】
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度。
8、点向式:(x-x0)/u=(y-y0)/v (u≠0,v≠0)【适用于任何直线】
表示过点(x0,y0)且方向向量
为(u,v )的直线。
9、法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】
表示过点(x0,y0)且与向量(a,b)垂直的直线。