二次根式有意义的条件
如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式。二次根式有意义的条件是被开方数是非负数。
扩展资料
二次根式的性质
1、任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是√a,则a的另一个平方根为﹣√a,;最简形式中被开方数不能有分母存在。
2、零的平方根是零。
3、负数的平方根也有两个,它们是共轭的。
4、有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
二次根式化简方法
1.把带分数或小数化成假分数;
2.把开方数分解成质因数或分解因式;
3.把根号内能开得尽方的因式或因数移到根号外;
4.化去根号内的分母,或化去分母中的根号;
5.约分。