不定积分是大学数学中的重要内容,被积分函数多种多样,文章将对有关三角函数的部分做一个梳理。
简单三角函数不定积分
例如sinx的不定积分
sinx=(1-cos2x)/2
∫sinx dx
=∫(1-cos2x)/2 dx
=1/2 - 1/2·∫cos2xdx
=1/2 - 1/4·∫cos2xd(2x)
=1/2 - 1/4·sin2x+C
对于简单的三角函数,我们需要牢记一些公式,如下
∫sinx dx = -cos x + C
∫cosx dx = sinx + C
∫tanx dx = ln |secx| + C
∫cotx dx = ln |sinx| + C
∫secx dx =ln |secx + tanx| + C
∫cscxdx = ln |cscx - cotx| + C
∫sinx dx =1/2x - 1/4 sin 2x + C
∫cosx dx =1/2 + 1/4sin2x + C
∫tanx dx =tanx – x + C
∫cotx dx =- cotx – x + C
∫secx dx =tanx + C
∫cscx dx =- cotx + C
以上公式在实际积分的应用,主要以配凑出目标函数,配凑出如下形式后,我们即可进行常规形式的积分。

三角换元法在积分中的应用
用三角换元主要有以下三种形式,其特点显而易见,就是根号下平方和差形式,这时采用换元法即可去掉根号,简化运算。

万能代换除特殊情况,一般是不轻易使用的。因为我们可以看出,代换后函数形式实际是比较复杂的。

此外,还有以下三种情况,需要我们根据形式的判断,选择换元形式和配凑目标