一、定义域
不同的函数的定义域是不同的,一定要把不同函数的定义域都记牢,这样做题才能清晰有思路,
常见几种函数的定义域:
(1)分数函数中分式的分母不为零;
(2)偶次方根下的数(或式)大于或等于零;
(3)指数式的底数大于零且不等于一;
(4)对数式的底数大于零且不等于一,真数大于零。
二、值域
求函数的值域也有不同的方法,最常见的有如下几种:
(1)配方法:求二次函数值域最基本的方法之一。例求函数y=x2-2x+5,x属于[-1,2]的值域。这道题的最好方法是用配方法,通过完全平方公式配成y=(x-1)2+4,然后根据定义域求最值。
(2)判别式法:对二次函数或者分式函数(分子或分母中有一个是二次)都可通用。
(3)反函数法:直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
(4)函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。
三、单调性
单调性的重要作用就是推出该函数的导数是否大于0或者小于0,如下面题目的应用:已知a>0,函数f(x)=x3-ax在x>1或等于1上是单调增函数,则a的最大值是()
这道题可以通过函数的导数解答:设f(x)的导函数为t(x)=3x2-a,因为x大于等于1,所以a的最大值为3。
四、奇偶性
判断函数奇偶性主要要两种方法,分别是定义定义域法以及奇偶函数定义法,下面为大家一一介绍:
(1)定义域法:一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数。
(2)奇偶函数定义法:在给定函数的定义域关于原点对称的前提下,计算f(-x),然后根据函数的奇偶性的定义判断其奇偶性
有:代入法、单调性法、待定系数法、换元法、构造方程法。
一、代入法
代入法主要有两种方式,一种是出现在选择题中,就是直接把题目的答案选项带入到题目中进行验证,这也是相对比较快的一种办法,另外一种就是求已知函数关于某点或者某条直线的对称函数,带入函数的表达公式或者函数的性质,直接性的求解题目,通常适用于填空题,难度也也不会太大。
二、单调性法
单调性是在求解函数至于或者最值得时候很常见的一种高效解题的方法,函数的单调性是函数的一个特别重要的性质,也是每年高考考察的重点。但是不少同学由于对基础概念认识不足,审题不清,在解答这类题时容易出现错解。下面对做这类题时需注意的事项加以说明,以引起同学们的重视。
三、待定系数法
待定系数法解题的关键是依据已知变量间的函数关系,正确列出等式或方程。使用待定系数法,就是根据所给条件来确定这些未知系数,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。
运用待定系数法解答函数问题的基本步骤是:1、首先要确定所求问题含有待定系数的解析式;2、根据题目中恒等的条件,列出一组含待定系数的方程;3,用函数的基本性质解方程组或者消去待定系数,从而使问题得到解决。