当前位置:首页>维修大全>综合>

可逆元的性质(可逆元与零因子的关系)

可逆元的性质(可逆元与零因子的关系)

更新时间:2024-04-14 15:22:39

可逆元的性质

单位又被称为可逆元。在数学里,于一(有单位的)环 的可逆元,即一元素 内的 ,其中 是 的可逆元组成了一于乘法下的群的可逆元群。可逆元群U(R)有时亦被标记成R*或R×。

在一可交换单作环R内,可逆元群U(R)以乘法作用于R上头。此一作用的轨道(orbit)被称为结合集合;换句话说,存在一于R上的等价关系 ~ ,且当r~s时,表示存在一可逆元u使得r=us。

U是一由环范畴至群范畴的函子:每一个环同态 f : R → S 都可导出一群同态U(f) : U(R) → U(S),当f会将可逆元映射至可逆元时。此一函数子有为整数群环结构的左伴随。

一个环R是一个除环当且仅当R* = R {0}。

更多栏目