当前位置:首页>维修大全>综合>

初中二次函数配方法公式

初中二次函数配方法公式

更新时间:2024-02-18 12:49:05

初中二次函数配方法公式

y=a(X十b/2α)^2十(4αc一b^2)/4α。

配方过程如下。

y=ax²+bx+c

=a(x²+b/a · x)+c

=a(x²+b/a·x+b²/4a²)-b²/4a+c

=a(x+b/2a)² + (4ac-b²)/4a

抛物线的解析式形式有:

①一般式:y=ax²+bx+c

②顶点式:

y=a(x+b/2a)² + (4ac-b²)/ 4a

③两根式:y=a(x-x1)(x-x2)

④对称式:若抛物线过(x1,n)(x2,n),

则其解析式为 y=a(x-x1)(x-x2)十n。

配方法

首先,明确的是配方法就是将关于两个数(或代数式,但这两个一定是平方式),写成(a+b)^2的形式或(a-b)^2的形式。

将(a+b)^2的展开,得 (a+b)^2=a^2+2ab+b^2。

故需配成(a+b)^2的形式,就必须要有a^2,2ab,b^2 ,则选定要进行配方的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),即进行添加和去增。

例题

原式为a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式为a^2+ 2b^2 解: a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 这就是配方法了。

附注

a或b前若有系数,则看成a或b的一部分, 例如:4a^2看成(2a)^2,9b^2看成(3b)^2 设二次函数解析式是y=ax2+bx+c。

顶点式

证明过程

二次函数图像

∵y=a(x²+bx/a)+c,

∴y=a[x²+2×x×b/2a+(b/2a)²]+c-a×(b/2a)2y=a(x+b/2a)²+c-b2/4a,

故y=a(x+b/2a)²+(4ac-b2)/4a

函数y=ax²+bx+c的顶点是[-b/2a,(4ac-b2)/4a]

补充举例

【例】将y=4x²-x-3配方并求其顶点。

【解】y=4(x²-x/4)-3

y=4[x²+2×x×(-1/8)+(-1/8)²]-3-4×(-1/8)²

y4(x-1/8)²-3-1/16

∴y=4(x-1/8)²-49/16

【答】函数的顶点是(1/8,-49/16)

更多栏目