当前位置:首页>维修大全>综合>

二次函数有没简单的配方法 最容易记的口诀之类的(二次函数怎么学最简单方法)

二次函数有没简单的配方法 最容易记的口诀之类的(二次函数怎么学最简单方法)

更新时间:2024-04-16 02:03:48

二次函数有没简单的配方法 最容易记的口诀之类的

二次函数简单的配方法:

1、把二次项系数提出来。

2、在括号内,加上一次项系数一半的平方,同时减去,以保证值不变。

3、这时就能找到完全平方了。然后再把二次项系数乘进来即可。

例题示例如下:

y=3X²-4X+1【原式】

=3(X²-4/3X)+1【提二次项系数】

=3(X²-4/3X+4/9-4/9)+1【加一次项系数平方】

=3(X-2/3)²-4/3+1【乘进二次项系数】

=3(X-2/3)²-1/3【整理】

最简单的口诀就是记公式,公式整理如下图:

扩展资料

配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2,可得:

这个表达式称为二次方程的求根公式。

解方程

在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

求最值

【例】已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。

分析:将y用含x的式子来表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4.

更多栏目