共轭调和函数:一个全纯函数的实数和虚数部分都是R上的调和函数,反过来说,对于一个调和函数u,总可以找到一个调和函数v,使得函数u+iv是全纯函数。这个函数v被称为调和函数u的调和共轭函数 。
函数v在差一个常数的意义上是唯一定义的。这个结果在希尔伯特变换中有应用,也是数学分析中一个与奇异积分算子有关的基本例子。在几何意义上,u和v可以被看作具有正交的关系。
如果画出两者的等值线,那么两条线在交点处正交(两条切线成直角)。在这种视角下,函数u+iv可以被看作一种“复位势场”,其中u是一个位势函数,而v是流函数。