等价无穷小不是只有x趋近于0的时候才能用,而是只有在函数值趋近于0,即函数式是无穷小的时候才能用,且被等价的无穷小是在乘除法中。例如当x→1的时候,sin(x-1)和x-1这两个都是无穷小,而且等价。那么在x趋近于1的极限中,如果乘除法中出现了sin(x-1),可以等价替换成x-1。而sin(x-1)在x→0的时候,不是无穷小,那么当x→0的时候,sin(x-1)不能和无论是x还是x-1进行等价。
等价无穷小不是只有x趋近于0的时候才能用,而是只有在函数值趋近于0,即函数式是无穷小的时候才能用,且被等价的无穷小是在乘除法中。例如当x→1的时候,sin(x-1)和x-1这两个都是无穷小,而且等价。那么在x趋近于1的极限中,如果乘除法中出现了sin(x-1),可以等价替换成x-1。而sin(x-1)在x→0的时候,不是无穷小,那么当x→0的时候,sin(x-1)不能和无论是x还是x-1进行等价。