当前位置:首页>维修大全>综合>

函数连续满足的三个条件(函数在一点处连续满足的三个条件)

函数连续满足的三个条件(函数在一点处连续满足的三个条件)

更新时间:2024-01-10 01:19:06

函数连续满足的三个条件

:

①f(x)在x0及其左右近旁有定义;

②f(x)在x0的极限存在;

③f(x)在x0的极限值与函数值f(x0)相等。

函数连续性的定义:

设函数f(x)在点x0的某个邻域内有定义,若 lim(x→x0)f(x)=f(x0), 则称f(x)在点x0处连续。

若函数f(x)在区间!的每一点都连续,则称f(x)在区间上连续。

间断点的定义:

间断点是指:在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。

间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。

1、可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如,函数y=(x^2-1)/(x-1)在点x=1处。

2、跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x/x在点x=0处。

3、无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为0。如函数y=tanx在点x=π/2处。

4、振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。

可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。

更多栏目