以下是三角函数的所有公式:
正弦函数公式:
sin(A±B) = sinA cosB ± cosA sinB
sin2A = 2sinA cosA
sinA±B/2 = ±√[(1±cosB)/2] sin(A±B)/2
余弦函数公式:
cos(A±B) = cosA cosB ∓ sinA sinB
cos2A = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1-2sin^2 A
cosA±B/2 = ±√[(1±cosB)/2] cos(A±B)/2
正切函数公式:
tan(A±B) = (tanA ± tanB) / (1 ∓ tanA tanB)
tan2A = 2tanA / (1 - tan^2 A)
tan(A±B/2) = sinB / (cosA ± 1)
余切函数公式:
cotA + cotB = (sinA sinB) / (cosA sinB + sinA cosB)
cot2A = (cot^2 A - 1) / 2 = (1 - tan^2 A) / 2cotA
cot(A±B/2) = cosB / (sinA ± 1)
割函数公式:
secA = 1/cosA,cscA = 1/sinA
以下是三角函数公式的推导公式:
1.双角和差公式:
sin(A±B) = sinA cosB ± cosA sinB (以sin(A+B)的证明为例)
将两个角分别表示成其一半角的正弦和余弦:
sin(A+B) = sin[(A/2)+(A/2)+B]
= sin(A/2)cos(A/2)+cos(A/2)sin(B+A/2)
= 2sin(A/2)(cos(A/2) + 1/2sin(B+A/2))
= 2sin(A/2)(cos(A/2) + cos(B/2)sin(A/2))
= 2sin(A/2)cos(B/2)cos(A/2) + 2(sin(A/2))^2sin(B/2)
= 2sin(A/2)cos(B/2)cos(A/2) + (1-cos^2(A/2))sin(B/2)
= 2sin(A/2)cos(B/2)cos(A/2) + sin(B/2) - cos^2(A/2)sin(B/2)
= sinAcosB+cosAsinB
2.双角公式:
sin2A = 2sinA cosA
(sin2A的证明)
sin2A = sin(A+A) =sinAcosA + cosAsinA= 2sinAcosA
3.半角公式:
sin(A/2) = ±√[(1±cosB)/2],cos(A/2) = ±√[(1±cosB)/2]
以sin(A/2+B/2) = √[(1+cosA)/2]√[(1+cosB)/2] - sin(A/2-B/2)的证明为例
将sin(A/2+B/2)换成sin[(A+B)/2],然后将其表示成cosA和sinB的函数,再代入√[(1+cosA)/2]√[(1+cosB)/2] - sin(A/2-B/2),得到:
√[(1+cosA)/2]√[(1+cosB)/2] - sin(A/2-B/2) = 2sin[(A+B)/4]cos[(A-B)/4]
= √[(1 + cosA)/2]sinB/2 + cosB/2 √[(1 - cosA)/2] - √[(1 + cosA)/2]cosB/2 + sinB/2 √[(1 - cosA)/2]
将两个平方根化简:
√[(1 + cosA)/2]√[(1 - cosA)/2] =√[(1 - cos ^2A)/4] = sinA/2
√[(1 + cosB)/2]√[(1 - cosB)/2] =√[(1 - cos ^2B)/4] = sinB/2
再将其代入上式,整理得:
sin(A/2 + B/2) = √[(1 + cosA)/2]√[(1 + cosB)/2] - sin(A/2 - B/2)
= sin(A/2)cos(B/2) + cos(A/2)sin(B/2)
4.和差化积公式:
cos(A±B) = cosA cosB ∓ sinA sinB
(cos(A-B)的证明)
cos(A-B) = cosAcos(-B) - sinAsin(-B)
= cosAcosB + sinAsinB
和sina=(e^ix - e^-ix)/2, cosa=(e^ix + e^-ix)/2的欧拉公式可以得到exp(ix) = cosa + i sina
cosAcosB + sinAsinB = (e^ia + e^-ia)/2(e^ib + e^-ib)/2 + i(e^ia - e^-ia)/2(e^ib - e^-ib)/2
= 1/2 [(e^ia cosb + e^ib cosa + e^i(a+b) + e^-i(a+b))]/2 + i [(e^ia cosb - e^ib cosa + e^i(a-b) - e^-i(a-b))]/2
= cos(a+b) +0i+ i sin(a-b)+0i
= cos (A-B)+ i sin (A-B)
将等号两边的实部和虚部分别相等,即得:
cos(A-B) = cosA cosB + sinA sinB (实部)
sin(A-B) = sinA cosB - cosA sinB (虚部)
5.商品化公式:
tan(A±B) = (tanA ± tanB) / (1 ∓ tanA tanB)
(tan(A+B)的证明)
tan(A+B) = sin(A+B)/cos(A+B)
= [sinAcosB + cosAsinB]/[cosAcosB - sinAsinB]
= (tanA + tanB)/(1 - tanA tanB)
6.万能欧拉公式:
e^ix = cosx + i sinx
1.当x=π时,得到欧拉公式:e^iπ+1=0
2.取x=-ix,代入欧拉公式,得e^-x = cosx - i sinx
3.对1式两边同时除以e^ix,得到cotx + 1 = tanx,对2式两边同时除以e^ix,得到cosx = (e^ix + e^-ix)/2及sinx = (e^ix - e^-ix)/2i,由此可以得到上述公式。