方法一、用试除法判断一个自然数a是不是质数时,用各个质数从小到大依次去除a,如果到某一个质数正好整除,这个a就可以断定不是质数;如果不能整除,当不完全商又小于这个质数时,就不必再继续试除,可以断定a必然是质数.
方法二、只要找出x为一个奇数和一个偶数平方差的形式(这是一定的)便可以a2-b2=(a+b)(a-b)便是两个因数.
例如26341,先找出比26341大的一个偶平方数,26896,与它的差是555,肯定不是平方数,再下一个平方数(其实考虑到(x+1)^2=x2+2x+1,因此直接将原数加上2x+1就行了,用不着算x+1的平方),27556,差1215,也不是,然后28224个位与1的差为3,直接排除,下一个2559也不是(一看就知道它等于50^2+59).再下个差为3直接排出,再下个、再再下个……找出规律来就很快了,最后221^2=48841,48841-26341=22500,很明显22500=150^2,就分解出来了26341=71×371