向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角]。向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。
向量的乘积公式:
向量a=(x1,y1),向量b=(x2,y2)。
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)。
PS:向量之间不叫"乘积",而叫数量积。如a·b叫做a与b的数量积或a点乘b。
发展历史:
向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。
“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。