当前位置:首页>维修大全>综合>

怎么求复根

怎么求复根

更新时间:2023-09-11 22:34:06

怎么求复根

非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。

共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。

共轭复根求解公式:

通常出现在一元二次方程中。若根的判别式△=b2-4ac<0, ,方程有一对共轭复根。

根据一元二次方程求根公式韦达定理:x1,2=-b±√b2-4ac/2a,当b2-4ac<0时, 方程无实根,但在复数范围内有2个复根。复根的求法为x1,2=-b±i√4ac-b2/2a(其中i是虚数,i2=-1)。

由于共轭复数的定义是形如a±bi(b≠0)的形式,称a+bi与a-bi(b≠0)为共轭复数。

另一种表达方法可用向量法表达:x1=pejΩ,x2=pe-jΩ其中p=√a2+b2,tanΩ=b/a。

由于一元二次方程的两根满足上述形式,故一元二次方程在b2-4ac<0时的两根为共轭复根。

根与系数关系:x1+x2=-b/a,x1+x2=c/a。

更多栏目