1.初中数学学习方法,为什么初二下才是真正的分水岭
1、课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2、课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3、课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业,一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
2.初中数学思维方法,初中数学思维方法全套
1、数形结合思想方法,数形结合思想是说数的问题可以通过对图形的分析来解决,形的问题也可通过对数的研究来思考。
2、化归思想方法,化归思想是说在解决实际问题时常常需要进行等价转换,把生疏的题目转化成熟悉的题目,通过特殊到一般,归纳出事物的规律,并能进行适当的变式变形。
3、分类讨论思想,分情况讨论思想就是当一个问题用统一的方法不能继续做下去的时候,需要对所研究的问题分成若干个情况分别进行研究的思想方法。
4、函数与方程思想方法,函数与方程思想就是对于有些数学问题要学会用变量和函数来思考,学会转化未知与已知的关系。
3.初中数学学习方法和技巧,初中数学学习十大技巧和方法
1、课前认真预习。预习是为了正式上课时能够有重点地听讲。通过预习教材,了解自己有哪些不明白的问题,带着这些问题听课,寻找答案,提高听课效率。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。在时间允许的情况下,还可以将练习册作业做完。
2、课内重视听讲。数学能力的培养主要在课堂上进行,上课时要紧跟老师思路,积极拓展自己的思维,比较自己的解题思路和老师讲的有哪些不同。有疑问要及时提出。
3、课后及时复习不留疑点。完成课后练习时,先把老师课上讲的知识点回忆一遍,正确掌握各类公式的推理过程。认真独立完成作业,勤于思考,理清思路。每个阶段的学习结束后,都要进行整理和归纳总结,把知识点、线、面结合起来交织成为知识网络,纳入自己的知识体系,形成自己的学习系统。
4.初中数学学习小窍门,初中数学学习十大技巧
1、阅读理解。目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。
2、提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
3、有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。
5.初中数学解题方法与技巧,初一数学一对一免费课程36节
1、配方法;所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成—个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。
2、因式分解法,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,中学课本上介绍有提取公因式法、公式法、分组分解法、十字相乘法等都是因式分解的常用手段。
3、换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、构造法;在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组、一个等式、一个函数、一个等价命题等,架起—座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
5、反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为两种:一种是相反的结论只有一种,另一种是相反的结论有无数种。前者需要把相反的结论推翻,后者只要举出一个反例,就达到了证明的目的。