圆周率距今已有4000多年的历史了,古代的人们一直都没停止过对π值的探求,公元前西方的《圣经》和中国的《周髀算经》都有关于圆周率的记载。
约在公元530年,数学大师阿耶波多算出了圆周率的粗略数值。后来,欧洲数学家斐波那契算出了圆周率约为3.1418。1500多年前,南北朝时期的数学家祖冲之计算出圆周率π的值在3.1415926和3.1415927之间。
圆周率就是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的常数。π也等于圆形的面积与半径平方之比,是精确计算圆的周长、圆的面积和球的体积等问题的关键值。
圆周率是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行大约计算,对于一般计算,用十位小数3.141592653便足够了,即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
圆周率的由来:
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。
埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。
例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。