当前位置:首页>维修大全>综合>

高斯解法公式解释

高斯解法公式解释

更新时间:2023-10-07 16:41:24

高斯解法公式解释

高斯算法

以首项加末项乘以项数除以2用来计算“1+2+3+4+5+···+(n-1)+n”的结果。这样的算法被称为高斯算法。

基本信息

中文名

高斯算法

外文名

Gauss algorithm

表达式

n(1+n)/2

算法由来

高斯小时候非常淘气,一次数学课上,老师为了让他们安静下来,给他们列了一道很难的算式,让他们一个小时内算出1+2+3+4+5+6+……+100的得数。全班只有高斯用了不到20分钟给出了答案,因为他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50个101,所以50×101就是1加到一百的得数。后来人们把这种简便算法称作高斯算法。

计算方法公式

具体的方法是:首项加末项乘以项数除以2

项数的计算方法是末项减去首项除以项差(每项之间的差)加1.

如:1+2+3+4+5+······+n,则用字母表示为:n(1+n)/2

等差数列求和公式 Sn=(a1+an)n/2 Sn=n(2a1+(n-1)d)/2; d=公差 Sn=An2+Bn; A=d/2,B=a1-(d/2)

作者简介

约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家,是近代数学奠基者之一,被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

其他公式

等差数列求和公式:

Sn=(a1+an)n/2

Sn=n(2a1+(n-1)d)/2

Sn=An2+Bn

d=公差

A=d/2

B=a1-(d/2)

更多栏目