当前位置:首页>维修大全>综合>

斐波那契数列矩阵求法(斐波那契数列求和推导过程)

斐波那契数列矩阵求法(斐波那契数列求和推导过程)

更新时间:2024-12-03 03:57:33

斐波那契数列矩阵求法

斐波那契数列用矩阵推导如下:

求F(n)等于求二阶矩阵的n - 1次方,结果取矩阵第一行第一列的元素。

问题转换为二阶矩阵的n次幂。

而计算二阶矩阵的N次幂运算,由于二阶矩阵乘法满足结合律,这样,可以快速计算二阶矩阵的n次幂运算。

假设A为一个二阶矩阵,则A的幂运算满足下面的条件:

A**6=A**3∗A**3

A**7=A**3∗A**3∗A**1=A**4*A**2*A**1

在这里,我们可以类似地把A看做是二进制中的2,2**7=2**4*2**2*2**1也就是说可以把矩阵的幂转换成二进制来表示。从而可以将n次幂拆解成长度为logn的二进制数来表示:7=111(二进制)。

这就是快速求二阶矩阵的核心方法。

更多栏目