Q是有理数集,有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数,不是有理数的实数称为无理数。相对而言,有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
Q是有理数集,有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数,不是有理数的实数称为无理数。相对而言,有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。