集合的基本运算公式分别是:交换律A∩B=B∩A,A∪B=B∪A;结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C);分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C);德摩根定律证明Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB。
集合,是基本的数学概念,是集合论的研究对象,指具有某种特定性质的事物的总体(在最原始的集合论、朴素集合论中的定义,集合就是“一堆东西”)集合里的事物,叫作元素
集合的基本运算:交集、并集、相对补集、绝对补集、子集。
(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。
(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
(3)相对补集:若A和B 是集合,则A 在B 中的相对补集是这样一个集合:其元素属于B但不属于A,B - A = { x| x∈B且x∉A}。
(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。
(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。符号语言:若∀a∈A,均有a∈B,则A⊆B。