1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。
3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。
向量代数规则:
1、反交换律:a×b=-b×a。
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
.向量加法的运算律交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB.即“共同起点,指向被向量的减法a=(x,y),b=(x',y'), 则a-b=(x-x',y-y')。c=a-b,以b的结束为起点,a的结束为终点。数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向。
向量加法满足平行四边形法则和三角形法则。向量加法的运算律有交换律a+b=b+a;结合律(a+b)+c=a+(b+c)。向量的减法:假如a、b是互为相反的向量,a+b=0。
向量加减定则:
三角形定则
三角形定则解决向量加法的办法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向比较后一个向量的终点。
平行四边形定则
平行四边形定则解决向量加法的办法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。
平行四边形定则解决向量减法的办法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点(平行四边形定则只适用于两个非零非共线向量的加减)。